Генная инженерия

Как генная инженерия может изменить будущее

Генная инженерия

Фергюс Уолш Корреспондент Би-би-си в области медицины

Image caption Так выглядит молекула ДНК. Ученые считают, что в ближайшее время они смогут вносить в нее изменения с помощью технологии CRISPR

Запомните аббревиатуру CRISPR уже сегодня, потому что завтра она, вероятнее всего, изменит ваше будущее.

Технология CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) произносится как “криспер” и представляет собой биологическую систему для изменения ДНК. Технология эта, известная также как генная инженерия, может изменить будущее всей планеты.

Звучит как довольно смелое заявление, но именно такого мнения придерживаются многие ведущие мировые генетики и биохимики.

CRISPR была открыта в 2012 году молекулярным биологом, профессором Дженнифер Дудной. Ее команда ученых в Университете Беркли в Калифорнии изучала, как бактерии защищаются от вирусной инфекции.

Сейчас профессор Дудна и ее коллега Эммануэль Шарпентье входят в число самых влиятельных ученых мира. Природный механизм, который они обнаружили в ходе своих исследований, может быть использован биологами для того, чтобы вносить точечные изменения в любую ДНК.

“С тех пор как мы опубликовали свое исследование четыре года назад, многие мировые лаборатории стали применять эту технологию на животных, растениях, людях, грибках, других бактериях – другими словами, практическими на каждом изучаемом организме”, – рассказала профессор в интервью Би-би-си.

Когда бактерию атакует вирус, она производит генетический материал, соответствующий генетической последовательности нападающего.

Этот материал в сочетании с ключевым белком Cas9 может прикрепиться к ДНК вируса, взломать генетический код и нейтрализовать вирус.

Теперь ученые могут применять эту же схему, чтобы вставлять в ДНК новые элементы, удалять или исправлять ее участки.

Этот процесс настолько точный, что ученые могут перебрать миллиарды химических комбинаций, составляющих ДНК клетки, чтобы внести в генетический код какое-то конкретное ключевое изменение.

Важно и то, что это простой и недорогой метод. Поэтому он ускорит все виды исследований – от создания генетически модифицированных моделей человеческих болезней у животных до поиска мутаций ДНК, которые провоцируют возникновение заболеваний или, наоборот, предохраняют от них.

Когда и как мы сможем начать ощущать на себе последствия лечения с применением CRISPR? Учитывая, что этой технологии всего лишь несколько лет, неудивительно, что испытания ее на пациентах еще не начались, однако некоторые эксперименты уже находятся на стадии планирования.

Бостонская биотехническая фирма Editas Medicine планирует запустить клинические испытания первого генномодифицирующего лекарства к 2017 году. Предполагается, что при его помощи можно будет лечить амавроз Лебера (LCA10) – редкое заболевание сетчатки глаза, которое приводит к слепоте, так как в результате мутации генов происходит постепенная утрата расположенных в глазу фоторецепторов.

Цель – лечение рака

В области биотехнологий существует сразу несколько недавно созданных фирм, которые надеются внедрить применение технологии CRISPR в больницах.

Они предполагают, что “крисперы” могут быть использованы для усиления функций Т-клеток организма, что может улучшить способность иммунной системы распознавать раковые клетки и бороться с ними. Еще одна потенциальная область применения технологии – лечение заболеваний крови и иммунной системы.

Правообладатель иллюстрации SPL Image caption С помощью CRISPR ученые смогут вмешиваться в ДНК

Лишь одно омрачает будущее CRISPR – борьба за патент на технологию. С одной стороны, на него претендует команда профессора Дудны, с другой – группа ученых из Бостона, штат Массачусетс.

Это вряд ли остановит исследователей в применении “крисперов”, но может серьезно повлиять на то, кто получит финансовую выгоду от новой технологии.

Две более ранние технологии генной инженерии уже применяются на практике.

Одна из них – TALENs – в прошлом году была использована в лондонской больнице Грейт-Ормонд-стрит для успешного лечения рака. У пациентки Лайлы Ричардс была агрессивная форма лейкемии, и ей не помогало никакое лечение. На сегодняшний день Ричардс остается первым и единственным человеком, чья жизнь была спасена при помощи редактирования генома.

Первые в мире испытания генной инженерии происходили в Калифорнии с использованием другой технологии – ZFNs.

Тогда иммунные клетки были изъяты из крови около 80 пациентов с ВИЧ. Затем ученые удалили ген под названием CCR5, который ВИЧ-инфекция использует для доступа к клеткам.

Лечение было основано на редкой генной мутации, которая дает людям естественный иммунитет к заболеванию.

Одним из волонтеров в том исследовании был Мэтт Чаппелл, который прожил с вирусом большую часть взрослой жизни и имел возможность своими глазами наблюдать тот ужасающий эффект, который ВИЧ и СПИД оказали на гей-сообщество Сан-Франциско.

С тех пор как ген его иммунных клеток был отредактирован, Чаппелл уже два года не пользуется антиретровирусными препаратами.

Несмотря на то что исследования эти были лишь небольшими и экспериментальными, а следовательно, к их результатам нужно относиться с определенной долей осторожности, тем не менее их результаты выглядят многообещающе.

Генетическое лекарство от ВИЧ было опробовано фирмой Sangamo Biosciences (Ричмонд, штат Калифорния), которая обладает эксклюзивной лицензией на технологию ZFN.

Правообладатель иллюстрации RIA Novosti Image caption Науке известны случаи излечения от ВИЧ с помощью генной инженерии

Компания собирается начать испытания на пациентах с гемофилией – серьезным заболеванием, связанным с нарушением свертываемости крови, – а также уже работает над лечением бета-талассемии.

Самый спорный вопрос в редактировании генома – это внесение изменений в зародышевую линию клеток человека, то есть тех генов, которые будут передаваться из поколения в поколение.

Теоретически можно было бы изменять ДНК эмбрионов, которые несут в себе ген болезни Хантингтона или муковисцидоза. Однако в таком случае можно говорить и о проведении других генетических “улучшений”, что фактически может привести к “генетическому проектированию” младенцев.

Генная инженерия и эмбрионы

Никто из ученых не предлагает (во всяком случае, пока) “производство” генетически модифицированных младенцев. Однако несколько групп китайских ученых уже провели некоторые базовые исследования в этой области, а Великобритания стала первой страной, которая формально разрешила генную модификацию человеческих эмбрионов – исключительно в научных целях.

Исследования будут проходить в лондонском институте Френсиса Крика, который откроется через несколько месяцев. Там будет находиться крупнейшая биомедицинская лаборатория в Европе и центр генной инженерии.

Правообладатель иллюстрации Science Photo Library Image caption Генетическая модификация эмбрионов человека может помочь значительно улучшить процедуру искусственного оплодотворения

Команда под руководством Кэти Ниакан, недавно вошедшей в список из 100 самых влиятельных людей мира по версии журнала Time, будет использовать CRISPR для редактирования основных генов эмбриона, чтобы выявить генетические ошибки, приводящие к повторяющимся выкидышам. В рамках исследования эмбрионам дадут развиваться лишь несколько дней.

“Я надеюсь на то, что это позволит нам более точно разобраться в механизмах раннего развития человека. Я думаю, что это также поможет выяснить, как мы можем улучшить технологию экстракорпорального оплодотворения, и понять, какие эмбрионы с большей вероятностью продолжать развиваться и приведут к рождению здоровых детей”, – сказала в разговоре с Би-би-си Кэти Ниакан.

Этическая сторона

Однако эти исследования вызывают этические вопросы у Марси Дарновски из Центра генетики и общества в Сан-Франциско.

По ее мнению, генетическая модификация человеческих эмбрионов при недостаточно контроле приведет к тому, что рано или поздно в одной из лабораторий будет создан первый генетически модифицированный младенец.

“Найдутся богатые родители, которые захотят приобрести для своего потомства последний “апгрейд”. Вполне возможно, что люди разделятся на тех, кто может позволить себе “улучшить” свое потомство, и тех, кому это не по карману или кто не захочет этого делать. А это приведет к еще большему неравенству, чем то, с которым мы уже имеем дело”, – считает Дарновски.

Многие ведущие ученые в этой области обеспокоены тем, что потенциально технология может быть использована в интересах евгеники, для создания генетической дискриминации.

В разговоре с Би-би-си профессору Дудна призналась, что ее мучал кошмарный сон. В нем она заходила в темную комнату, в которой спиной к ней сидел человек.

“Когда он повернулся ко мне лицом, я с ужасом поняла, что это Гитлер и что он вызвал меня, чтобы обсудить новую технологию, в использовании которой он очень заинтересован”, – рассказала профессор.

По словам Дудны, несмотря на то что очень важно регулировать использование “крисперов”, вместе с тем необходимо и прийти к согласию относительно дальнейших действий.

“Я не хочу давать невыполнимых обещаний, но мне кажется, что это поможет положить конец болезням – и мы должны дать шанс ученым и докторам претворить это в жизнь”, – говорит профессор.

Источник: https://www.bbc.com/russian/science/2016/06/160606_crispr_gene_editing

Генная инженерия

Генная инженерия

Вас порадовала бы возможность запрограммировать интересы своего будущего сына или вы сочли бы это издевательством над человеческой природой и фактором? Если первое, то вы наверняка должны заинтересоваться такой сферой биологии и медицины, как генная инженерия.

С тех пор, как геном человека был расшифрован, перед учеными разных сфер раскинулись необозримые горизонты светлого будущего человеческого тела: лечение болезней на генном уровне, эволюционный фильтр и вышеупомянутое программирование генов.

Правда, пока генная инженерия не выходит за рамки экспериментов на животных, но будьте уверены, выйдет.

Генная инженерия — одно из самых современных направлений науки, а ее совершенствование дает уникальную возможность работать с ДНК человека.

Так, ученые уже сегодня способны выключать те или иные гены, создавая новые способы лечения рака, воспроизводя новые виды животных и помогая людям, страдающим от бесплодия, наконец-то обзавестись ребенком.

Вместе с тем, когда в конце 2018 года ученому из Китая удалось изменить геном на стадии эмбриона у двух развивающихся детей, данное событие вызвало небывалый резонанс в обществе.

Благодаря методу CRISPR, ученый отключил определенный ген, в результате чего дети родились здоровыми от больного ВИЧ-инфицированного отца. Как выяснилось позднее, в конце 2019 года ученого арестовали и запретили заниматься научной деятельностью. Почему? Давайте попробуем разобраться в данной статье.

Читать далее

Как сообщает китайское государственное информационное агентство Синьхуа, Хэ Цзянькуй — исследователь, ответственный за создание первых в мире младенцев с генетически отредактированным геномом, был приговорен к трем годам тюремного заключения по обвинению в незаконной медицинской практике.

В ноябре 2018 года Цзянькуй объявил широкой общественности о том, что на стадии эмбриона отредактировал геном двух девочек-близнецов. Действия ученого и его коллег сделали младенцев невосприимчивыми к вирусу иммунодефицита. Недавно стало известно о существовании третьего ребенка с отредактированным геномом.

Но как это возможно?

Читать далее

Тихоходки — крошечные существа, чья поразительная выживаемость в самых экстремальных условиях позволяет им без проблем находиться даже под высоким ионизирующем излучением, в тысячи раз превышающую смертельную дозу для человека. Если тихоходки обладают столь впечатлительными свойствами, то почему бы нам не использовать их ДНК для того, чтобы объединить его с нашими клетками и стать более выносливыми во время колонизации других планет?

Читать далее

В 2015 году Военно-воздушные силы США начали разработку лазерного оружия, которое устанавливается на транспортные средства и обезвреживает взрывоопасные мины на расстоянии. Но перед тем, как обезвредить скрытые под землей боеприпасы, их необходимо сначала обнаружить.

На данный момент этим занимаются специально обученные собаки или солдаты с металлоискателями, каждый раз подвергая свою жизнь смертельной опасности.

Чтобы избавить людей и животных от рискованных заданий, американская компания Raytheon начала разработку генетически модифицированных бактерий, способных находить мины и сигнализировать об их местонахождении при помощи яркого свечения.

Читать далее

Как часто на полках магазинов вы натыкаетесь на продукты с пометкой на упаковке “не содержит ГМО”? Полагаю, это не редкость. Генетически модифицированными называют продукты, гены которых были изменены таким образом, что продукты приобрели определенные свойства — например вкус или способность защищаться от паразитов.

Если обратить внимание на овощные секции в супермаркетах, то взгляд непременно упадет на огромные, ослепительные красные помидоры, арбузы без семян, которые всегда сладкие и сезонные фрукты вне сезона. Эти полезные деликатесы наполняют разум ощущением неконтролируемого благополучия. Большинство этих продуктов подверглись генной модификации.

Но что это значит? И как употребление в пищу таких продуктов влияет на здоровье?

Читать далее

Возможно ли воскресить вымерших животных? Первым, кто задал себе этот вопрос, скорее всего, стал древний неандерталец, который охотился на мамонтов с целью получения ценных в условиях ледникового периода меха и мяса.

Возродить мамонта ему, естественно, не удалось, однако спустя пару тысяч лет этим хочет заняться его дальний потомок — человек. Все, что ему нужно для исторического свершения — это образец мягкой ткани вымершего животного.

Так каких же животных мы можем воскресить на самом деле?

Читать далее

Мы с вами живем в очень интересное время. Ученые клонируют кошек, выводят генно-модифицированные сорта овощей и фруктов, создают даже ГМО-комаров. А недавно исследователи стали с неприкрытым интересом поглядывать на молочных коров.

Дело в том, что если лишить этих парнокопытных их рогов при помощи редактирования генома, многим фермерам не придется тратить силы и средства на их удаление. Рога — единственное оружие коров, данное им природой. Но сегодня хищники не представляют угроз для коров, а потому рогами они могут поранить не только друг друга, но и человека.

Поэтому животноводам куда приятнее иметь дело с безрогими буренками. Но не все так просто. В попытках вывести стада безрогих парнокопытных, ученые обнаружили, что в отредактированной ДНК коров есть ошибки.

Читать далее

Один из ведущих российских специалистов в области методов молекулярной биологии и генной инженерии Денис Владимирович Ребриков в интервью журнала Nature рассказал о планах провести эксперимент по созданию детей с отредактированными генами.

Он заявил, что готов повторить опыт китайского генетика Хэ Цзянькуя, в ходе которого на свет появились близняшки Лулу и Нана.

По словам Ребрикова, он рассматривает возможность провести имплантацию генно-отредактированных эмбрионов до конца года, если получит соответствующее одобрение трех ведомств, в том числе Министерства здравоохранения РФ.

Читать далее

Рождается ребенок. Со смертельным диагнозом. И вскоре одноразовое замещение гена лечит его в первые недели жизни. Стоимость? Лучше вам не знать. Генная терапия скоро достигнет важной вехи.

Уже завтра фармацевтический гигант Novartis рассчитывает получить одобрение на запуск того, что, по его словам, станет первым «блокбастером» заместительной генной терапии.

Блокбастер — это любой препарат, который приносит более 1 миллиарда долларов в продажах в год.

Читать далее

В ноябре прошлого года появились новости о том, что китайский ученый тайно изменил гены эмбрионов пары китайских близнецов, и потрясли весь мир.

Однако, хотя использование передовых технологий для изменения генофонда человека было преждевременным, оно стало предвестником того, как генетика изменит наше здравоохранение, отношение к детям и, в конечном итоге, наше отношение к себе и к нашему виду.

Генетическая революция уже началась, но мы не готовы ответственно относиться к этим прометеевым технологиям.

Читать далее

Источник: https://hi-news.ru/tag/gennaya-inzheneriya

Святой Грааль генной инженерии

Генная инженерия

С момента своего появления четыре десятилетия назад, генная инженерия стала источником больших надежд в здравоохранении, сельском хозяйстве и промышленности.

Но это также вызвало глубокое беспокойство, не в последнюю очередь из-за трудоемкости процесса редактирования генома.

Теперь новая методика, CRISPR-Cas, предлагает как точность, так и способность изменять текст генома в нескольких местах одновременно. Но это не устранило причины для беспокойства.

Геном можно рассматривать как своего рода музыкальную партитуру. Точно так же, как ноты говорят музыкантам в оркестре, когда и как играть, геном говорит составным частям клетки (как правило, белкам), что они должны делать.

Партитура, также может включать заметки композитора, которые указывают возможные изменения, излишества, которые могут быть добавлены или исключены, в зависимости от обстоятельств.

Для генома такие «заметки» возникают из жизни клеток на протяжении многих поколений в постоянно меняющейся среде.

https://www.youtube.com/watch?v=bMXcdw6SAaA

Генетическая программа ДНК сродни хрупкой книге: порядок ее страниц может меняться, а некоторые даже перемещаются в программу других клеток.

Если страница, скажем, ламинирована, она менее подвержена повреждению, во время ее перелистывания.

Аналогичным образом элементы генетической программы, защищенные прочным покрытием, способны лучше проникать в различные клетки, а затем воспроизводиться по мере деления клетки.

Впоследствии этот элемент становится быстро распространяющимся вирусом. Следующим шагом является клетка, которая воспроизводит вирус — бесполезный или вредный — чтобы разработать способ ему противостоять. И фактически именно так, в качестве защиты бактерий от вторгшихся вирусов, впервые возник процесс CRISPR-Cas.

ИноСМИ26.10.2017The New York Times01.09.2017Nautilus15.08.2016Project Syndicate27.01.2016

Этот процесс позволяет приобретенным свойствам стать наследуемыми. В ходе первой инфекции, небольшой фрагмент вирусного генома — своего рода подпись — копируется в геномный остров CRISPR (дополнительный фрагмент генома, вне текста родительского генома).

В результате память инфекции сохраняется на протяжении поколений. Когда потомок клетки инфицирован вирусом, последовательность будет сравниваться с вирусным геномом.

Если подобный вирус заразил родителя клетки, потомок его узнает, а специальные механизмы его уничтожат.

У ученых этот сложный процесс расшифровки занял много десятилетий, не в последнюю очередь потому, что он противоречил стандартным теориям эволюции. Но на сегодняшний день ученые выяснили, как реплицировать процесс, позволяя людям редактировать с предельной точностью конкретные геномы, — это практически Святой Грааль генной инженерии за почти 50 лет.

Это означает, что ученые могут применять механизм CRISPR-Cas для устранения проблем в геноме — эквивалента опечаток в письменном тексте. Например, в случае рака мы хотели бы уничтожить те гены, которые позволяют размножаться опухолевым клеткам. Мы также заинтересованы в введении генов в клетки, которые никогда не получали их естественной генетической передачей.

В этих целях нет ничего нового. Но с CRISPR-Cas мы гораздо лучше подготовлены к их достижению. Предыдущие методы оставляли следы в модифицированных геномах, способствуя, например, устойчивости к антибиотикам.

Мутация, полученная CRISPR-Cas, напротив, не отличается от мутации, которая возникла спонтанно.

Именно поэтому, Управление США по контролю за продуктами и лекарствами постановило, что такие составляющие не должны быть помечены как генетически модифицированные организмы.

Если требовалось модифицировать несколько генов, предыдущие методы были особенно сложными, поскольку процесс должен происходить последовательно.

Благодаря CRISPR-Cas способность выполнять модификации генома одновременно позволила создать грибы и яблоки, которые не окисляются или не становятся коричневыми, вступая в контакт с воздухом, — это результат, требующий одновременного деактивирования нескольких генов. Такие яблоки уже появились на рынке и не считаются генетически модифицированными организмами.

Другие приложения находятся в разработке. Так называемая процедура генерации генов для манипулирования геномом может уменьшить вред, причиняемый насекомыми, несущими болезни. Целенаправленная модификация гамет у комаров — самых смертоносных для людей в мире — сделало бы их неспособными к передаче вируса или паразита.

Но к применению CRISPR-Cas необходимо подходить с осторожностью.

Несмотря на то, что эта технология может оказаться благом в борьбе со многими смертельными заболеваниями, она также предполагает серьезные и потенциально совершенно непредсказуемые риски.

Во-первых, поскольку геномы размножаются и распространяются воспроизведением, модификация всей популяции потребует модификации только ограниченного числа особей, особенно если жизненный цикл организма короток.

Более того, учитывая вездесущность гибридизации среди соседних видов, возможно, что модификация одного вида москитов также будет постепенно и бесконтрольно распространяться на другие виды.

Анализ геномов животных показывает, что такие события имели место в прошлом, причем виды были захвачены генетическими элементами, которые могли бы повлиять на балансы экосистем и эволюцию видов (хотя невозможно сказать, как).

И если изменение популяции комаров является опасным, неизвестно, что может произойти, если мы модифицируем клетки человека — в частности, зародышевые клетки — без тщательного анализа.

Технология CRISPR-Cas готова изменить мир. Сегодня главная задача состоит в том, чтобы обеспечить положительный результат этих изменений.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.

Источник: https://inosmi.ru/science/20171220/241029590.html

Ген’иальная медицина

Генная инженерия

Егор Баторов о магии генной инженерии

Человек — это промежуточное звено эволюции, необходимое для создания венца творения пpиpоды — рюмки коньяка и дольки ­лимона.

Стругацкие «Понедельник начинается в субботу»

Череда поистине великих достижений в области генетики, молекулярной биологии и вирусологии связывает между собой литры жизненно необходимого инсулина и сою в колбасе, повседневный «ИФА на сифилис» и будущие сады на Марсе. Сугубо теоретические знания о структуре ДНК да лигазах-рестриктазах обернулись в недалеком прошлом вполне практической генетической инженерией. Полученные с ее помощью продукты могут обидно называться «генетически модифицированными» и стоить значительно дешевле на полке в супермаркете либо гордо именоваться «рекомбинантными» и быть заслуженно дорогими, находясь в аптеке. Последующее же неизбежное развитие генной инженерии, по разным прогнозам, может привести как к долгой счастливой жизни без голода и болезней, так и к зомби-апокалипсису в результате побега инфицированной мартышки от доигравшихся, наконец, ­ученых.

Суть вопроса

Генетическая (генная) инженерия — совокупность приёмов, методов и технологий, которые ­позволяют:

  • получать рекомбинантные РНК и ­ДНК;
  • выделять гены из организма ­(клеток);
  • осуществлять манипуляции с генами и вводить их в другие ­организмы.

Свойства любого организма (цвет лепестков/шерсти/волос, способность усваивать глюкозу, возможность вырасти до 2 метров и т. д.) зависят от белков. Белки кодируются определенными генами.

Ген можно «вырезать» из ДНК какого‑либо организма ферментами или, зная последовательность аминокислот в нужном белке, собрать ген этого белка из отдельных нуклеотидов, затем «вставить» его в ДНК бактерии (растения, животного), которая начнет производить заданный белок.

За кажущейся простотой — десятилетия научного поиска, отмеченные несколькими Нобелевскими ­премиями.

Для тех, кто забыл

Вектор — молекула ДНК или РНК, способная переносить включенные в нее чужеродные гены в ­клетку.

Лигазы — ферменты бактерий и вирусов, которые соединяют концы двух фрагментов ­ДНК.

Плазмида — внехромосомная молекула ДНК бактерий или дрожжей, как правило, кольцевая, способная к автономной репликации. В генной инженерии используется как ­вектор.

Рестриктазы — ферменты бактерий, узнающие и атакующие определенные последовательности нуклеотидов в ДНК. В генной инженерии рестриктазы «вырезают» фрагменты из молекулы ДНК вектора, что позволяет вставить на освободившееся место нужный ­ген.

Значение генной инженерии для медицины

Продукты генной инженерии как‑то исподволь, но прочно вошли в медицинскую практику: лекарства для лечения редких болезней, рекомбинантный инсулин, вакцины против вируса гепатита В — без них современному врачу трудно представить себе мир.

Генно-инженерными методами производят некоторые высокоселективные аллергены для кожных проб, некоторые реагенты для иммуноферментного анализа и многое другое. На этапе доклинических испытаний медикаментов приносятся в жертву миллионы генетически измененных ­животных.

Ниже в порядке усложнения технологии и степени отрыва от реальности представлены основные примеры применения генной инженерии в медицине.

Лекарства из бактерий

Сегодня на вооружении у врачей есть ряд препаратов, для которых критически важно точное соответствие аналогам в организме.

Это препараты заместительной терапии при эндокринологических заболеваниях, гематологических болезнях (эритропоэтин, гранулоцитарный колониестимулирующий фактор, факторы свертывания крови, некоторые моноклональные антитела и др.

), вирусных инфекциях (интерфероны), инфаркте миокарда и ишемическом инсульте (фибринолитики) и многих ­других.

Методы генной инженерии имеют следующие преимущества при получении такого рода ­лекарств:

  • Идентичность веществ по структуре человеческим. Инсулин, производившийся из поджелудочных желез свиней и крупного рогатого скота, отличался от человеческого по одной и трем аминокислотам, соответственно, это часто приводило к нежелательным ­реакциям.
  • Более низкая цена и удобное производство. Для получения 200 г сухого вещества того же инсулина требуется поджелудочных желез от более чем 6000 коров (или свиней). То же количество может быть произведено бактериями, содержащимися в 1000 л культуральной ­жидкости.
  • Отказ от специфического сырья, которое полностью не очищается, например, гипофизы трупов использовались для получения соматотропного гормона, а моча женщин в менопаузе — традиционный источник фолликулостимулирующего и лютеинизирующего ­гормонов.

Лекарства из флоры и фауны

Бактерии и дрожжи, культуры клеток яичника китайского хомячка и моркови, продуцирующие сырье для препаратов, — это хорошо, но довольно дорого, к тому же сборка некоторых сложных молекул тем же бактериям недоступна из‑за биохимических различий с человеком. Идея перевода «биореакторов» на подножный корм или удобрения давно витала в воздухе.

Механизм в целом тот же: нужный ген встраивается в ДНК животного или растения. ДНК микроинъекцией вводится в ядро оплодотворенной яйцеклетки, которая имплантируется в матку. Большинство эмбрионов, конечно, погибает, а среди родившихся животных далеко не все производят нужное вещество.

Тем не менее на сегодняшний день мы имеем трансгенных коров, коз, свиней, кроликов, кур, лососей и шелкопряда.

Из их биологических жидкостей в экспериментах получены человеческие α-антитрипсин, альбумин, гемоглобин, эритропоэтин, гормоны, факторы свертывания крови, шовный и перевязочный материал… Стоило ли ради свиной спермы отходить от женской мочи, пока не ясно, ведь сложности с очисткой сохраняются, да и цена этих препаратов с учетом технологического процесса всё еще будет очень ­высокой.

Растения-биореакторы удобнее тем, что лишены болезней млекопитающих, как правило, быстрее растут, проще и дешевле в разведении и хранении урожая. Ассортимент трансгенной флоры не уступит нашим рынкам в конце лета: от огурцов с подсолнухами до клубники и киви.

«Любимая» же зелень генных инженеров-фармакологов — это табак, соя, картофель, рис и кукуруза.

Набор возможных лекарств примерно соответствует «животным»: гормоны, гемоглобин, белки крови, моноклональные антитела для диагностики и лечения онкологии и вирусных инфекций, интерферон, а также антигены вирусов и бактерий — потенциальные вакцины. Ни одного препарата пока не ­зарегистрировано.

Плодовые вакцины

Логическое продолжение трансгенных растений — так называемые съедобные лекарства (в основном вакцины).

В самом деле, зачем тратить время и средства на выделение белков холерного вибриона, малярийного плазмодия, вирусов гепатита В, бешенства и иммунодефицита человека из томатов, бананов и картофеля, если их можно съесть и так? По крайней мере, в опытах на мышах удается достигнуть развития иммунного ответа, и даже термическая обработка в ряде случаев не снижает эффективности съедобной вакцины. Антигены в кишечнике «встречаются» с антигенпрезентирующими клетками, далее всё, как обычно. Преимущества очевидны: очень дешево, вкусно и в большом количестве. Основные недостатки: возможность развития иммунологической толерантности вместо иммунного ответа, вариабельность содержания интересующего белка от плода к плоду даже с одного куста, и в итоге — неясность ­«дозирования».

Вакцины

«Австралийский антиген», белок оболочки вируса гепатита В и капсидные белки нескольких типов вируса папилломы человека для соответствующих вакцин продуцируют трансгенные дрожжи. Принцип тот же, что и с инсулином, только вместо человеческого синтезируется вирусный белок.

Этим же путем идут создатели испытываемой сейчас противогриппозной вакцины, в основе которой лежит иммуногенный белок клеточной стенки М2, высококонсервативный, в отличие от почти ежегодно «обновляемых» гемагглютинина и нейраминидазы (тех самых «H» и «N» с порядковыми номерами в названии очередного подтипа ­вируса).

Также возможно создание вирусных и бактериальных векторов. При этом гены высокоиммуногенных белков вводятся в непатогенные вирусы и бактерии, после чего, например, штаммы шигелл начинают экспрессировать антигены малярийного плазмодия, а сальмонеллы — белки вируса иммунодефицита человека.

Попадая в организм, такие «овцы в волчьих шкурах» индуцируют не только гуморальный, но и клеточный иммунный ответ.

Особый плюс подобных «сальмонелльных» вакцин — это возможность их перорального приема, что значительно упростит иммунизацию населения и снизит уровень напряженности (и шума) в прививочных кабинетах детских ­поликлиник.

Важнейшим успехом генной инженерии в медицине, венцом иммунопрофилактики и перспективным методом лечения опухолей и аутоиммунных заболеваний считаются ДНК-вакцины. В плазмиду встраивают промотор и ген интересующего белка (оболочки вируса, клеточной стенки бактерии, опухолевый антиген).

Полученные векторы тем или иным путем вводятся в организм и попадают в ядро антигенпрезентирующей клетки. В ней продуцируется чужой белок, который «режется» на короткие пептиды и представляется для распознавания клеткам иммунной системы. Таким образом, роль «биореактора» играют уже клетки организма человека.

Большинство таких вакцин пока обладают недостаточной иммуногенностью, ведутся работы по ее ­повышению.

Генная терапия

Дальнейшее развитие данной отрасли науки привело к появлению генной терапии. Тут уже всё по‑взрослому, хотя пока и экспериментально. Устраняются посредники типа бактерий, коз и бананов.

Как правило, так пытаются лечить тяжелые и редкие наследственные или спорадически возникающие заболевания, патогенез которых обусловлен дефектом какого‑либо одного гена, например, первичные иммунодефициты.

При этом другие методы лечения неэффективны или труднодоступны, и терять, в общем, нечего. Результаты впечатляющие, но и цена нежелательных реакций ­высока.

В начале 2000‑х гг. в Англии и Франции проводились клинические испытания генной терапии Х-сцепленного тяжелого комбинированного иммунодефицита, при котором нарушен синтез общего рецептора нескольких цитокинов, отвечающих за дифференцировку и пролиферацию лимфоцитов.

При отсутствии аллогенной трансплантации гемопоэтических стволовых клеток дети умирают от тяжелых инфекций в 1‑й год жизни. В ходе испытаний 20 маленьким пациентам были трансплантированы собственные (то есть дефектные) стволовые клетки костного мозга, в которые был введен ретровирусный вектор, несущий ген нормального белка рецептора и вирусный промотор.

Блестящие результаты — восстановление функций иммунной системы, отсутствие рецидива в течение всего периода наблюдения (4–11 лет) — были омрачены развитием Т-клеточного острого лимфобластного лейкоза у 5 детей (известно, что один ребенок погиб). Выяснилось, что ген белка и вирусный промотор у всех 5 заболевших встроились в ДНК рядом с протоонкогенами, т. е.

генами, при усилении экспрессии которых возможно неконтролируемое деление клеток. Встраивание генного материала в ДНК хозяина в наше время в основном дело ­случая.

Первые ошибки были учтены, в настоящее время исследователи выбирают неонкогенные вирусы с известными местами встраивания в человеческую ДНК, или ­плазмиды.

Ведутся разработки препаратов генной терапии и для более «народных» болезней: ишемической болезни сердца, хронической критической ишемии нижних конечностей (местно вводятся гены фактора роста эндотелия сосудов — с целью стимуляции ангиогенеза), опухолей различной локализации (блокада онкогенов, индукция апоптоза) и, конечно, сахарного диабета I типа. Есть надежда, что они будут ­дешевле.

В общем, в генной инженерии остается достаточно технологических трудностей, иммунологического несоответствия, опасности инфицирования человека вирусами животных с потенциальным появлением новых болезней. Всего этого упрямые и беспринципные ученые не очень‑то и боятся. Понятно, что у человечества хватит мозгов, чтобы как‑то решить эти проблемы, остается надеяться, что хватит ума не наделать ­новых.

Испытания препаратов генной терапии с разным успехом проходят при синдроме Вискотта — Олдрича, хронической гранулематозной болезни, муковисцидоза, мышечных дистрофиях Дюшенна и Беккера, болезни Паркинсона, лизосомальных болезнях накопления. Первое зарегистрированное в Европе в конце 2012 г. лекарственное средство генной терапии при редкой болезни гиперхиломикронемии стоит около $ 1,6 миллиона на ­курс.

online.wsj.com

Источник: https://www.katrenstyle.ru/articles/journal/medicine/spotlight/genialnaya_meditsina

Генная инженерия от A до Z

Генная инженерия

Приветствую уважаемое сообщество! Итак, это мой первый пост на хабре 🙂 Посвящен он будет серьезной теме, в которой, волею судеб, я неплохо разбираюсь. А именно, генной инженерии.

Помнится, тут пробегал пост в котором говорилось о геннотехнологической лаборатории “на коленке”. Оказалось, что тема интересна аудитории, поэтому я решил заняться ее развитием с просветительскими целями.

Я буду давать наглядные и понятные обычным людям примеры для описания сложных процессов. Если кто-то посчитает нужным меня поправить – не стесняйтесь. Я буду сознательно упускать многие вещи, но если вам кажется, что без них страдает логика изложения – так же поправляйте. Итак, начнем. Допустим, мы хотим создать трансгенную новогоднюю елку светящуюся синим светом. Допустим, британские ученые как раз недавно открыли ген синего свечения. Вот и посмотрим на этот процесс по стадиям.

Ген свечения.

Будем вести эксперимент, как настоящие ученые. Они слышат что открыт новый ген, что же им делать дальше, если хочется создать елку?

Настоящий ученый обычно лезет в ncbi.nih.gov и по нескольким ключевым словам ищет научные публикации на эту тему. Например “синее свечение ген светится”. Типична ситуация, когда по одной из ссылок он действительно находит статью “британских ученых”, которая оказывается статьей группы китайских авторов, ни один из которых не отзывается на e-mail.

С другой стороны, в статье можно выяснить название этого гена. Пусть он будет называться ButiBl1 (названия генов принято давать буквенными обозначениями + индекс, а впереди может идти несколько первых букв названия организма из которого он выделен, их можно отбрасывать). ButiBl1, например, может быть расшифровано как Butiaa marina blue light 1 gene. Но правила здесь не строгие.

По названию гена в базе данных нуклеотидов ищут последовательность гена.Вот что примерно видит ученый на экране.

Кстати, мы можем воспользоваться инструментом BLAST и введя последовательность ДНК, получить, к каким генам она может относиться. Это тоже очень важный рутинный инструмент для генных инженеров.

Итак, мы получили последовательность гена. Очень хорошо, что дальше? Нужно ведь получить сам ген. Для этого вернемся к вопросу о том, что такое ДНК.

Про ДНК.

ДНК – это длинная молекула (очень длинная), является полимером из четырех вариантов маленьких молекул – азотистых оснований, попросту “букв”. Геном клетки разбит на части — от одной до нескольких десятков молекул ДНК, причем обычно у каждой из них есть еще и своя копия -близнец, несущая те же гены. Каждая из молекул ДНК особым образом свернута чтобы поместиться в клетке и покрыта белковыми комплексами, образуя хромосому.

Я надеюсь, все это помнят, но если нужно освежить память, пожалуйста, в wiki 🙂

Итак, запомните главное: 1. ДНК – это молекула. 2. Так как это молекула, то ее не видно в микроскоп, не подцепить пинцетом и т.д. и т.п. 3. В клетке считаное количество молекул ДНК, причем если их много, то они разнородные и «собрать их пучком» чтобы подцепить пинцетом (пункт 2) тоже не получится. Как же генные инженеры работают с молекулой ДНК если она одна и с ней невозможно провести никаких прямых манипуляций? Дело в том, что во всех процедурах происходит работа не с одной, а с множеством молекул ДНК, с тысячами и миллионами ее копий. Тысячи таких одинаковых молекул плавают в водном растворе и этот раствор называется “препаратом ДНК”. Все манипуляции с молекулами проводятся типичными химическими методами. То есть ученые работают не с одной молекулой, а с огромным их количеством в растворе с применением химических методов. Как же нам получить ген bl1? Есть два способа. Первый – прямой химический синтез. Однако им не получить достаточно длинные молекулы из-за ошибок синтеза. Поясню, почему. ДНК – это полимер. Его можно синтезировать наращивая по кирпичику, причем есть четыре кирпича разных цветов. На каждой стадии наращивания эффективность составляет порядка 99%. То есть из ста молекул одна получается неправильной. Теперь представьте, что нам нужно сделать молекулу длиной в 1000 букв? Тогда применяя банальную арифметику окажется, что доля верных молекул составит 0,991000=0,00004 Учитывая, что разделить верные и неверные молекулы почти невозможно, наша затея тут потерпит фиаско, и в реальных задачах синтез более 100-150 букв уже представляется малореалистичным. Остается второй способ.

Потрошим бутявку

Мы выбиваем из шефа командировку на побережье Мальдивских островов, где только и водится пресловутая бутявка морская (Butiaa marina). Ловим ее, толчем в порошок, заливаем последовательно разными химическими гадостями чтобы из всей массы тканей в растворе остались только молекулы ДНК. Конечный итог этого – препарат ДНК бутявки. Так как выделение производится из относительно большого образца, то там не одна молекула ДНК, а много – от каждой клетки по паре штук. Эта ДНК содержит не только ген bl1, но и все остальные бутявочные гены. Этот этап называется выделением ДНК. Ее можно выделить не только в виде раствора, а переосадить и получить сухой препарат, то есть чистые молекулы ДНК.

Амплификация

Итак, командировка окончена, поэтому мы метнемся обратно в лабораторию где нас поджидает чудная процедура амплификации. Смотрите, в препарате ДНК бутявки куча всяких разных генов, а не только нужный нам. Мы же можем работать только с однородными препаратами, нам нужно довести содержание молекул ДНК гена bl1 хотя бы процентов до 90.

И тут мы применяем поистине чудесный прием, являющийся краеугольным камнем современной биоинженерии, называемым полимеразной цепной реакцией или ПЦР (polymerase chain reaction, PCR). За открытие этого метода присудили нобелевскую премию, хотя до сих пор ходят споры о приоритете, поэтому фамилий не называю, кому интересно – почитайте.

Принцип полимеразной цепной реакции довольно сложен, объяснение дам очень грубое и только для того чтобы было хоть какое-то представление, за подробным – добро пожаловать по ссылке выше. Итак, нам нужно размножить (амплифицировать) молекулы ДНК определенного гена. Для этого мы открываем страничку с последовательностью нашего гена и находим его концы. Берем 20-30 букв с конца и столько же с начала и синтезируем короткие молекулы ДНК химическим синтезом (обычно это делают специальные фирмы) То есть мы имеем две новые пробирки. В одной из них плавает много коротких 30-буквенных последовательности ДНК, гомологичных началу гена, а во второй – то же самое, но для конца гена. Эти новые молекулы называются праймерами. Теперь мы запускаем реакцию ПЦР, причем умножаться у нас будет участок между двумя праймерами (между начальным и концевым). Реакция ПЦР – это биохимическая циклическая реакция, требующая смены температуры. В свое время ее делали на водяных банях, теперь же используют специальные приборы – амплификаторы (они же ПЦР-машины). Их строение очень простое, там стоят элементы Пельтье, есть место для пробирок и ко всему этому присобачены электронные мозги и управляющая панель. То есть вернулись мы в лабораторию с ДНК бутявки. Заказали два праймера — к началу и к концу гена. Потом взяли чистую пробирку, капнули туда чуть-чуть ДНК, чуть чуть каждого праймера, полимеразу (фермент, который строит ДНК), нуклеотидов для строительства ДНК, и немного солей для правильной работы фермента, поставили в амплификатор на пару часов. В амплификаторе смесь то нагревалась, то остужалась и на выходе мы получили пробирку в которой плавает очень много копий ДНК нужного нам гена. Однако пробирка прозрачная, как увидеть что там есть какая-то ДНК, да еще нужная?

Детекция ДНК.

Существует много способов увидеть ДНК, я же опишу классический, называемый гель-электрофорезом. В лаборатории имеется небольшая ванночка с электродами, называямая форезной камерой. В эту ванночку заливается расплав электрофорезного геля, который по сути очень похож на мармелад. Но вместо сахара там находятся добавки солей и флуоресцентный краситель – бромистый этидий. Это вещество интересно тем, что встраивается в молекулу ДНК и в этом случае начинает светиться в ультрафиолете. После того как гель застынет мы наносим в лунку на нем препарат ДНК где предположительно уже должно быть много копий гена bl1 и включаем электрический ток. В другую лунку наносим “маркер веса” – специальный препарат молекул ДНК, состоящий в равных долях из молекул длины 100, 200, 300 и т.д. нуклеотидов. Молекулы ДНК полярны и движутся в электрическом поле, при этом чем они длиннее, тем сильнее цепляются за структуру геля и тем медленнее в нем движутся. Через некоторое время мы выключаем электричество и несем гель под ультрафиолетовую лампу. На той дорожке где мы нанесли маркер веса мы видим кучу полосок. Самая дальняя от места нанесения пробы соответствует самой короткой ДНК, самая ближняя – самой длинной. В соседних лунках ДНК бежит с одинаковой скоростью, поэтому мы сравниваем их расположение на соседних дорожках и можем определить, относительный размер. Итак, мы обнаружили на дорожке где нанесли пробу одну светящуюся полоску и размер ее судя по соседнему маркеру веса является таким, каким мы ожидали. Мы аккуратнентко вырезаем лезвием из геля этот светящийся кусочек – он содержит много ДНК гена bl1 запутавшейся в геле и с помощью специальных манипуляций высвобождаем из него молекулы. Можно себя поздравить, мы выделили ген bl1 из бутявки! Я рассказал только о первой стадии этого сложного и длинного процесса. Продолжать ли дальше? Решать вам 🙂

upd. Часть вторая.

Часть третья.
upd2. Перенес в биотехнологии

  • генная инженерия
  • ДНК
  • биотехнологии

Источник: https://habr.com/ru/post/48533/

Для родителей
Добавить комментарий